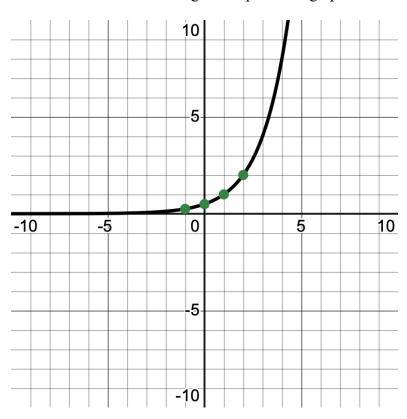
Unit 2 Test Prep Review Fall 25

1. Using the following exponential function:
f(x) = 5(4/5)
a. What is the y-intercept (initial value)?
b. Is this a growth or decay exponential?
c. Growth factor?
d. Growth rate?
e. Determine f(4). Round to 3 decimal places.
2. A car initially costs \$32,000 and depreciates at a rate of 6% per year.
a. Write an equation for the car's value, $V(t)$, where t is in years.
b. Rewrite the equation to model the car's monthly depreciation.
d. Determine the car's value after 3 years.
3. The growth factor for a population over 6 months was 3.6. Determine the monthly growth factor.
4. Write the Exponential model for the table below:

X	-2	0	2	4
f(x)	405	180	80	36

5. Write the formula for the given exponential graph.



6. The table below represents a relationship between x and h(x):

X	-2	-1	0	1	2
h(x)	2.25	3	4	5.33	7.11

a. Is the function linear or exponential? Determine using constant and percent rate of change.

b. Determine the equation that models this table.

7. The table below represents a relationship between x and f(x):

X	-2	-1	0	1	2
f(x)	4	6	8	10	12

- a. Is the function linear or exponential? Determine using constant and percent rate of change.
- b. Determine the equation that models this table.
- 8. Using the table below, determine if the data set represents a linear or exponential function.

X	f(x)	Average Rate of Change	Percent Rate of Change
-2	18000		
-1	12000		
0	8000		
1	5333		

9. The population of fish in a pond is modeled by:

$$f(x) = \frac{600}{1 + 5 * 2^{-t}}$$

- a. What is the carrying capacity?
- b. What was the initial population?
- c. Find the population after 4 years.
- d. How many years will it take to reach 400 fish?

- 10. A principal amount of \$800 is invested at an annual interest rate of 4.6%.
- a. Find the total amount after 8 years if compounded quarterly.
- b. Find the total amount after 8 years if compounded continuously.
- 11. Rewrite the exponential model y = 6.2(5/8) as an equivalent model with base e. (in the form $y = Ce^{rx}$). Round r to 3 decimal places.
- 12. Expand and simplify: $\log_4 \left(\frac{16x\sqrt[3]{y}}{z^2}\right)$

13. Condense and simplify: $3 \ln(x) - 4 \ln(z) + 2 \ln(y) - 5 \ln(w)$

- 14. A bacteria culture starts with 40 cells and increases at a rate of 35% per hour.
- a. Write an exponential model for this growth.

b. Predict the number of bacteria after 6 hours.
15. A dose of 100 mg of a drug is administered to a patient. Each hour, 20% of the drug leaves the body.
a. Write an exponential decay model for the amount remaining after x hours.
b. Predict the amount after 5 hours.
c. Predict when the amount will reach 25 mg.
16. The function $S(x) = 28 + 2.4\log(x + 1)$ models ocean salinity x meters deep.
a. Find the depth where the salinity equals 31.
b. Find the salinity at a depth of 600 meters.